

INVESTIGATING PLANT BREEDING SELECTION EFFICIENCY AND PERFORMANCE TRENDS IN

Gossypium hirsutum L.

RAJESH S. PATIL

KENCHARADDI H.G.

MANJUNATH C. PALOTI

UNIVERSITY OF AGRICULTURAL SCIENCES, DHARWAD, KARNATAKA, INDIA

7 ACRDN MEETING, SEPT. 15-17, 2017, NAGPUR, INDIA

TIMELINE

Production of SC hybrids in a Line X Tester scheme 2009 - 10 Hybrids evaluation and identification of 10 good crosses 2010 - 112011 – 12 Individual Plant Selections in the F2 generation (87) 2012 – 13 IPS 1 and 2 in each of 22, F3 generation progeny 2013 – 14 IPS within each progeny of 1 and 2 in the F4 generation Bulking progeny of 1 and 2 in the F5 generation 2014 – 15 Evaluation of the 22 progeny pairs in the F6 generation 2015 - 16 2016 – 17 Evaluation of the 22 progeny pairs in the F7 generation

Р	EDIGREE
L3T2-2	CPD813 x 8-1-2
L3T2-6	9
L9T4-7	1 764 D 224
L9T4-8	L-761 x R-221 8
L9T4-3	0
L1T1-7	Sahana x 1-2-1
L1T1-8	10
L8T4-1	L-761 x Sahana
L8T4-10	10
L7T2-1	DC-12 IPS x 8-1-2
L7T2-4	6
L7T2-5	0
L6T4-2	L-761 x SCR-81
L6T4-3	8 8
L6T4-8	0
L5T3-4	RAH 100 x IC-6
L5T3-6	100 x IC-6
L5T3-10	10
L7T1-4	DC-12 IPS x 1-2-1
L7T1-6	8
L2T1-8	L-761 X 1-2-1 <u>10</u>

44 PROGENIES EVALUATED -

Seed Cotton Yield (g/pl)			
201!	5-16	16 201	
Set1	Set2	Set1 Set2	
45.93	44.37	24.64 23.3	
45.15		5 23.99	
47 % yield reduction in 2016-17			

14/22 WERE CONSISTENT IN PERFORMANCE (SCY)

18.2 % - NOT CONSISTENT

81.8 % - TRULY CONSISTENT. HIGH HERITABILITY?

	IPS 1	IPS 2
H (BS)	67.55	72.04
GAM	33.75	48.54

MSS (2015-16)				
Source	df	IPS 1	IPS 2	
Trt	21	207.8*	362.4*	
Rep	1	225.2	54.36	

CORRELATION BETWEEN				
YE	YEARS IPS SETS		ETS	
Set1	Set2	2015-16 2016-1		
0.41	0.22	-0.07 0.35		
NON-SIGNIFICANT				

CONSISTENTLY BETTER PERFORMING 14 PROGENIES

Entry 8 (36.4%)	% Increase of IPS1 over IPS2		
	2015-16	2016-17	
L9T4-3-1	49	87	
L6T4-8-1	103	33	
L9T4-8-1	36	13	
L7T1-4-1	16	8	
L5T3-10-1	13	28	
L6T4-2-1	28	38	
L7T2-1-1	100	62	
L3T2-6-1	45	12	
Average	24		

Entry 6 (27.3%)	% Increase of IPS2 over IPS1		
,	2015-16	2016-17	
L5T3-6-2	5	9	
L1T1-8-2	46	2	
L7T1-6-2	58	1	
L8T4-10-2	7	45	
L6T4-3-2	2	11	
L3T2-2-2	75	44	
Average	16		

AMONG THE 14 CONSISTENT PROGENIES

37.5 % of the 1st IPS became more productive than the 2nd IPS in the 2nd year 50.0 % of the 2nd IPS became more productive than the 1st IPS in the 2nd year.

Overall, 42.8% IPS showed improvement in the 2nd year

THIS CAN BE CONSTRUED AS
INCREASED EFFICIENCY DUE TO YIELD BASED SELECTION

TOP 5 GENOTYPES IN THE 2 IPS SETS ACROSS 2 YEARS

Entry	SCY (kg/ha)	% lmp.	FL (mm)	FS (g/tex)
L7T2-1-1*	2425	87	28.8	18.8
L3T2-2-2	2331	80	26.2	20.5
L3T2-6-1	2194	69	29.7	20.2
L8T4-1-2	2128	64	29.9	23.0
L1T1-7-2	1967	52	28.8	19.7
ARBH-813 ©	1299		26.8	20.0

^{*} COMPACT GENOTYPE

CONCLUSIONS

PRAGMATIC SELECTION OF PARENTS

SEVERE EARLY GENERATION SELECTION

JUDICIAL USAGE OF TIME AND RESOURCES

REACHING MUTIPLE OBJECTIVES

STABILITY OF PERFORMANCE

